Reconstruction of Doses at the Bethlehem Steel Corporation

James W. Neton, Ph.D., CHP
NIOSH / OCAS
May 4, 2004

Discussion Topics
- Types of Radiation Exposure
- Properties of Uranium
- The Bethlehem Steel Site Profile (Technical Basis Document)
- An Example Calculation
- The Residual Contamination Report

Types of Radiation Exposure
- Internal Exposure
 - From uranium deposited in the body
 - Pathways are inhalation, ingestion, or absorption
- External Exposure
 - From exposure to uranium metal outside the body such as uranium billets or rods
 - Skin dose much greater than organ doses
Properties of Uranium

- Emits alpha, beta, and gamma radiation
- With the exception of skin, external dose to body is fairly low
- Concentrates in only a few internal organs
- When inhaled, dose to lung can be very large
- Absorption from GI tract is low (0.2% for insoluble forms)

Distribution of Uranium in the Body

- Skeletal System
- Lungs
- Kidneys
- Liver

Site Profiles / Technical Basis Documents

- Serve as guides for Health Physicists doing dose reconstructions
- Ensure a standard, consistent approach for each case
- Data collected from a number of sources
- Reviewed and approved by NIOSH
- Living Documents
Bethlehem Steel Technical Basis Document (TBD)

- Covered employment period is 1949 through 1952
- NIOSH research found evidence for 13 individual rollings during 1951 and 1952
- TBD assumes 48 rollings (one per month) between 1949 and 1952
- Estimates inhalation intake using existing air concentration data
- Assigns a distribution of values up to 1,000 times the maximum allowable concentration

Bethlehem Steel Technical Basis Document (continued)

- Assumes a 10 hour work day with heavy breathing
- Uses claimant favorable solubility values for types of uranium
- External exposure estimate based on known radiation properties of uranium
- Ingestion pathway not explicitly addressed
 - NIOSH is currently revising the TBD to include this pathway
 - Not expected to substantially increase doses

Calculation of Internal Dose using Upper Limit Air Concentration

- Assumptions
 - Worker was employed during the entire four year covered period
 - Regardless of job classification was present during all 48 modeled rollings
 - Worked 10 hour days at a heavy breathing rate
 - Inhaled worse case solubility type of uranium
Total Internal Dose to Selected Organs 30 Years after Inhalation

<table>
<thead>
<tr>
<th>Organ</th>
<th>Effective Dose (rem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lungs</td>
<td>3165</td>
</tr>
<tr>
<td>Bone</td>
<td>216</td>
</tr>
<tr>
<td>Kidney</td>
<td>90</td>
</tr>
<tr>
<td>Liver</td>
<td>31</td>
</tr>
<tr>
<td>Colon</td>
<td>7</td>
</tr>
<tr>
<td>Pancreas</td>
<td>6</td>
</tr>
<tr>
<td>Stomach</td>
<td>6</td>
</tr>
<tr>
<td>Bladder</td>
<td>6</td>
</tr>
</tbody>
</table>

Probability of Causation

- Determination of the chance that a cancer is the result of exposure to uranium at Bethlehem Steel
- Calculated at the 99% credibility level
- Based on NCI Interactive Radiobiology Program (IREP)
- Incorporates the effect of many variables on the outcome such as cancer type, age at diagnosis, and time since first exposure

PC uncertainty for leukemia

example: man exposed to 11 rem age 40, diagnosed age 50
Prostate Cancer
30 year latency

Probability of Causation (continued)

- Organs that concentrate uranium (i.e., have a higher internal dose) have much higher PC values than those that don’t
- Contribution of external dose to PC for internal organs is small
- Although skin doesn’t concentrate uranium, external exposures can be high, thus resulting in high PC values

Residual Contamination Report Error

- Draft report received from NIOSH’s contractor on May 19, 2003
- NIOSH received Congressional request to insert dates of contamination periods on May 15, 2003
- NIOSH evaluated each facility and modified text for 96 out of 219 facilities in the report
- A cut and paste error inadvertently identified BSC as having residual contamination outside the covered period
Additional Information

- Contact the NIOSH Office of Compensation Analysis and Support (OCAS) at 800-356-4674 or 513-533-6800
- Visit our website at: www.cdc.gov/niosh/ocas
- E-mail us at ocas@cdc.gov